北斗智库环保管家网手机站4月16日隆重上线
北斗智库环保管家网讯:“十三五”开局以来,国内逐步开始了燃煤电厂超低排放改造的战略布局,随着超低排放改造的实施,烟气水分含量增大,烟气特性发生了较大改变,对烟气成分监测的精确性提出了更高要求。
因此,分析对比各种烟气监测技术的性能特点与实用价值,提出适用于超低排放改造的在线烟气成分监测技术,为燃煤电厂烟气监测系统的选型提供参考,对“十三五”燃煤电厂超低排放改造具有重要的指导意义。
据《煤电节能减排升级与改造行动计划(2014-2020年)》改造后烟气中二氧化硫、氮氧化物排放的限值执行标准分别为35mg/m3、50mg/m3。因此,国内烟气成分监测设备必须满足烟气中二氧化硫、氮氧化物的低量程测定需求。下面介绍几种烟气成分监测技术,分析总结适用于超低排放烟气成分的在线监测技术,以供大家选型。
1二氧化硫监测技术
常见的二氧化硫单一组分检测方法包括:碘量法、溶液电导率法、定电位电解法以及紫外荧光法等。其中紫外荧光法较适用于烟气中氮氧化物体积浓度的连续在线监测。
1.1碘量法
碘量法是在采样前把淀粉指示剂加入碘标准溶液中,采用过程中生成硫酸根离子与碘发生反应,使溶液由颜色变成无色,达到反应终点。通过控制吸收液的温度和控制气体介质中二氧化硫、吸收液中碘的反应时间(3~6min)以及采样气体流量,防止电挥发损失,保证测量结果的准确性,此种方法又称为直接碘量法。另外采样器是利用间接碘量法,利用溶液吸收二氧化硫,然后加淀粉指示剂,最后由碘标准溶液滴定至蓝色终点。该检测方法检测下限为0.01umol/mol。
1.2溶液电导率法
溶液电导率法是利用溶液在温度恒定时,有与其浓度相对应的电导率。当该种溶液吸收气体或与气体发生反应时,其电导率发生变化,测出电导率从而求出气体浓度。检测二氧化硫所用的溶液为硫酸酸性双氧水溶液或碘溶液,吸收气体介质中的二氧化硫,二氧化硫被双氧水或碘氧化成硫酸,然后由标准电极(铂电板)和工作电极测出溶液增加的电导率从而求出二氧化硫的浓度。
1.3定电位电解法
采用该检测方法的仪器核心是二氧化硫传感器,当待测气体介质进入传感器气室,通过渗透膜进入电解槽,使在电解液中被扩散吸收的二氧化硫在规定的氧化电位下进行定电位电解,根据电解电流求出二氧化硫浓度。当工作电极达到规定的电位时,被电解质吸收的二氧化碳发生氧化反应,产生电解电流,在一定范围内其大小与二氧化硫浓度成正比。
1.4紫外荧光法
紫外荧光法适用于SO2浓度在线监测,根据物质分子吸收光谱和荧光光谱能级跃迁机理,采用zn灯照射SO2气体分子,使其吸收波长为190mm-230mm的紫外光成为激发态分子SO2*,由于SO2*不稳定,会瞬间返回基态,发射出波长为330nm的特征荧光。在低湿度条件下,浓度在0~143mg˙m3范围内时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。这种方法可长距离输送气体介质,不用加热保温,易于维护、管理。
1.5小结
碘量法检测准确度高,但操作复杂,硫化氢等还原性物质对其测定结果影响较大,分析样品的时间相对较长,不适用于连续在线监测;溶液电导率法设备费用较低,易于推广,但抗干扰性能较差,需经常标定,长期使用易出现误差且不易于维护;定电位电解法在湿法操作上维护管理方便,但像所有电化学传感器一样,电解传感器的输出信号随着时间的推移会逐渐衰降或“老化”,使用年限一般为1-2年,需要经常更换。
因此,这三种检测方法均较适用于二氧化硫浓度的短期检测。而紫外荧光法具有操作简单、精度较高、抗干扰强、分析速度快等特点,是检测烟气中二氧化硫浓度的理想仪器,可广泛应用于电力、石油、化工、环保等具有燃煤锅炉的排污现场,能够过对污染源的排放情况进行有效的连续在线监测。
2氮氧化物监测技术
常见的氮氧化物单一组分检测方法包括:盐酸萘乙二胺比色法、激光诱导荧光法、原电池库仑滴定法、压电石传感器、气体敏感元件传感器以及化学发光法等。其中化学发光法较适用于烟气中氮氧化物体积浓度的连续在线监测。
2.1盐酸萘乙二胺比色法
用冰醋酸,对氨基苯磺酸和盐酸萘乙二胺配成吸收液,当气体通过吸收液时,其中的二氧化氮被吸收并转变成亚硝酸和硝酸,亚硝酸又与对氨基苯磺酸发生重氮化反应,此反应再与盐酸萘乙二胺耦合成玫瑰红色的偶氮染料,反应最终产物在540nm出的吸收光度与其浓度成正比,因此可用分光度法进行测定。最低检出浓度(以NO2计)为0.025mg/m3。
2.2激光诱导荧光法
用特定波长的激光束,激发NO2(或NO)分子到较高能级成为激发态分子,激发态分子NO2*(或NO*)跃迁回基态时会以光子发射的形式释放能量成为荧光。荧光强度与其浓度成正比,可由光强判定其浓度。该方法属于光学法,可实现较低的检测极限,可达3-17ppb。
2.3原电池库仑滴定法
库仑池中有两个电极,一是活性炭阳极,二是铂网阴极,池内充0.1mol/l磷酸盐缓冲溶液(pH=7)和0.3mol/l碘化钾溶液。当进入库伦池的样气中含有NO2时,则与电解液中的i-反应,将其氧化成I2,而生成的I2又立即在铂网阴极上还原为I-,便产生微小电流。如果电流效率达100%,则在一定条件下,微电流大小与样气中NO2浓度成正比。最低检测出浓度(以NO2计)为0.03mg/m3。
2.4气体敏感元件传感器
利用n型金属氧化物半导体(如ZnO,SnO2等)的电导率对环境变化十分敏感的特性,以SnO2为基体材料,采用厚膜工艺研制成的NOx气敏元件具有良好的物理性,化学性稳定,灵敏度高,最低检出浓度为0.1ppm。
2.5化学发光法
在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2跃迁返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成正比,光电转换器吸收光子产生光电流,光电流强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。为得到NO2的浓度,可把NO2预先转化为NO。其检测极限和灵敏度都可达到1ppb以下。
2.6小结
盐酸萘乙二胺比色法是一种传统的化学检测方法,不能实现连续在线分析,只能采样测量。激光诱导荧光法,响应速度快,灵敏度高,可实现很低的检测极限,但系数过于复杂和精密,造价太高。原电池库仑滴定法响应时间变长,连续运行能力差,不适宜连续在线监测。
气体敏感元件传感器具有较好的稳定性,选择性,灵敏度高,成本较低,但随着使用时间的推移,响应时间变长,灵敏度降低,元件属于易消耗品,一般只能使用1-2年,需要经常更换。化学发光法测量精度与灵敏度高,响应时间短,线性范围宽,稳定可靠,是目前主流的氮氧化物测定方法之一,可实现氮氧化物体积浓度的连续在线监测。
3二氧化硫/氮氧化物多组分监测技术
目前光谱吸收法目前国内应用最为广泛的烟气多组分监测技术,其中非分光红外吸收光谱法应用较多,还包括少部分非分光紫外吸收光谱法,又称差分吸收光谱法。这类技术是基于朗伯-比尔(Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。这两种监测技术均可实现对烟气中二氧化硫、氮氧化物多组分的连续在线监测。
3.1非分光红外吸收光谱法
非分光红外吸收光谱法(ndir)是目前国内应用最为广泛的烟气成分在线监测技术。该监测技术是基于被测介质对红外光有选择性吸收而建立的一种分析方法,属于分子吸收光谱分析法。红外光线通过检测气室后,通过测定被气体吸收部分波长后的红外辐射强度来测量被测气体的浓度。该气体分析方法具有如下特点:
1)可测量多组分气体,除单原子的惰性气体和具有对称结构无极性的双原子分子外;
2)测量范围宽,上限可达100%,下限可达几个ppm的浓度,当采取一定措施后,甚至可以进行ppb级的分析;
3)测量精度高,一般都在±2%fs;
4)响应时间快,一般在10s以内;
5)选择性好,特别适合对多组分烟气气体中某一待测组分的测量,而且当烟气中一种或多种组分浓度发生变化时,并不影响对待测组分的测量。
3.2非分光紫外吸收光谱法
非分光紫外吸收光谱法(DOAS)是一种光谱监测技术,其基本原理是利用空气中气体分子的窄带吸收特性来鉴别气体成分,并根据窄带吸收强度来推演气体浓度。DOAS基于朗伯-比尔定律,将气体的吸收截面分为随波长的慢变化部分和快变化部分。
通过多项式拟合高通滤波方法去除光谱中的慢变化部分,剩下的则由于分子的窄带吸收造成的光源衰减。由于基于朗伯-比尔定律具有线性性质,烟气中气体的吸收可看做是线性叠加,故可采用最小二乘拟合方法,用气体标准差分吸收截面对测量得到的差分吸收光谱进行拟合,反演出烟气中气体的浓度。
该气体分析方法具有:高灵敏度,可实现多组分实时在线监测;机械、电子部件较简单、无气路、维护简便;开放式光程测量方法,无需采样,高精度非接触测量;适用于活性较大的物质测量等特点,十分适宜烟气中二氧化硫、氮氧化物等多组分气体浓度的连续在线监测。
3.3小结
由于排烟环境及烟气成分复杂,传统非分光红外吸收光谱法对烟气成分的检测结果极易受环境温度、水分含量、hc等因素干扰,从而无法实现对二氧化硫、氮氧化物低浓度的准确测量,因此必须对传统红外吸收光谱法进行技术创新升级,排除温度、水分、HC等因素对其检测结果的影响,才可实现烟气成分的低量程检测。
如新款烟气分析仪(低量程在线型)Gasboard-3000plus在传统红外吸收光谱气体分析技术的基础上,将微流红外吸收光谱气体分析技术与隔半气室设计相结合,并采用整体恒温、水分调节、hc干扰减除、自动调零等装置,可实现红外光谱吸收法对超低排放烟气成分的实时在线监测。
非分光紫外吸收光谱法灵敏度高、检测下限低、选择性好,较适用于超低排放烟气多组分的实时在线监测,如紫外烟气分析仪(超低量程)Gasboard-3000UV基于国际紫外差分光谱吸收气体分析技术,采用独特的算法,长光程多次回返气体室,检测下限达到1mg/m3,抗干扰能力强,测量精度高,同样可满足超低排放烟气监测市场的需要。
4总结
可用于测量烟气中二氧化硫、氮氧化物的监测技术有很多,但如果是在符合HJ/T76(按超低排放限值计算,二氧化硫和氮氧化物量程应不大于175mg/m3和250mg/m3)标准条件下,对烟气单一组分的浓度进行测定,测量二氧化硫浓度可考虑采用紫外荧光法,测量氮氧化物浓度可考虑使用化学发光法;此外,红外/紫外吸收光谱气体分析技术用于对烟气单一组分的测量也十分适宜。