MBR是一种较为新型的污水处理和回用技术,但是其因为自身膜污染和膜投资成本等问题在推广应用中遇阻。正因为此,国内外的相关研究10余年未曾懈怠,中山大学从污染源入手,建立了膜污染评估新方法,提出了有效的MBR反洗方法,研发了具有高效脱氮功能、低膜污染速率和低成本特点的新型MBR,并开展了应用和中试研究。
MBR是由活性污泥和膜分离耦合而成的一种较为新型的污水处理和回用技术。鉴于膜的固液分离作用,MBR具有占地少、污泥浓度高、出水水质好等显著技术优势,因此,该技术在全球范围被广泛应用。据统计,全球MBR污水处理总量的市场增长率一直保持在10%以上。随着MBR技术的成熟和运营经验的积累,越来越多的大规模MBR工艺(>10万吨/天)被用于市政污水处理。例如,在瑞典斯德哥尔摩将投产世界最大MBR污水厂,设计处理规模达86万吨/天。显然,MBR技术将在污(废)水处理领域扮演重要角色。
膜污染和膜投资是困扰MBR推广应用的重要问题
作为一种新兴技术,MBR仍然存在自身的缺陷。在MBR运行过程中,污泥混合液中的微生物、有机物等会在膜表面沉积,引起膜污染,进而导致产水量大大降低、工艺运行不稳定见。国内外科研人员和工程管理人员对MBR膜污染问题开展了10余年的研究工作,取得了显著进展。但是,在MBR膜污染方面依然有许多科学和技术问题尚未得到彻底解决。总体来看,“膜污染物来源多(污水、生物大分子、微生物)、形成途径复杂(膜截留、生物生成、生物降解等)”和“膜污染控制方法不成熟、机理不明确”是困扰MBR膜污染识别、表征及控制的关键。另外,过高的膜投资成本无疑会限制MBR在污(废)水处理领域的应用。因此,研发高性能膜材料或采用低成本过滤介质有望降低膜的投资成本。然而,如何确保新型膜材料和低成本过滤介质的稳定运行值得探究。
膜污染物的源解析
中山大学环境科学与工程学院孟凡刚教授课题组一直从事膜污染和新型MBR反应器的研究工作。微生物细胞表面的胞外聚合物(EPS)及其释放所产生的溶解性微生物产物(SMP)一直被认为是膜污染物的主要来源。EPS和SMP组成(多糖、蛋白质和腐殖酸等)和形成机制(微生物分泌和基质降解等)的复杂性导致人们对膜污染机制的认识一直不明确。研究发现:不同分子尺寸范围的SMP具有显著不同的膜污染行为。在0.45 ?m-10万Da尺寸范围内的 SMP(主要由多糖组成)会在膜表面沉积,成为关键的膜污染物;而小于10万Da的SMP会透过膜,成为膜出水有机物的主要成分。同时,借助蛋白质组学的研究方法,研究发现:在膜污染的初期(TMP发生跳跃前),SMP是膜污染物中蛋白质的重要贡献者;而在严重膜污染阶段(TMP发生跳跃后),胞外聚合物(EPS)逐渐成为膜污染物中蛋白质的主要来源。此外,生物降解实验和多组分生物降解模型(G models)的研究结果表明:SMP中的多糖和膜污染物(TMP跳跃后)中的多糖具有非常相似的生物降解行为;而EPS中的蛋白质和膜污染物中的蛋白质具有相似的降解行为。以上研究表明,膜表面微生物自身分泌的EPS和污泥上清液的SMP分别是膜污染物(严重膜污染阶段)中蛋白质和多糖的根本来源。这些研究结果一方面揭示了膜污染物的来源及形成规律,另一方面为MBR膜污染控制方法的优化(如反洗等)提供了重要理论依据。
膜污染物的光谱表征
构建膜污染物的原位表征新方法对膜污染的预测与控制具有极为重要的意义。研究发现:荧光光谱(EEM)和紫外-可见光谱(UV-vis)技术在表征溶解性有机物(DOM)性质及其水环境行为方面具有潜在优势。例如:EEM可以有效识别DOM不同组分间(如:蛋白质类和腐殖质类组分)的相互作用机制,为复杂成分溶液(如:SMP或DOM)膜污染机理的解析提供了理论依据;而基于UV-vis扫描所获得的特征光谱参数(DSlope325-375、S275-295、SR)不但可以表征不同水环境中(pH、钙离子、铝离子)DOM聚集体分子尺寸变化情况,而且能够准确预测膜污染趋势及膜污染过程中膜截留能力的变化。这些研究为MBR中污泥混合液SMP的原位检测及其膜污染趋势的预测提供了理论和技术支持。
MBR原位化学反洗研究
物理反洗和化学清洗是MBR运行过程中必不可少的操作。在传统物理反洗和传统原位化学反洗的基础上,课题组提出了具有高频次和低剂量特点的维护原位化学反洗方法。在线碱液反洗不仅能够降低50%左右的污染速率,还可以同步为膜池(好氧池)中微生物的硝化过程提供碱度,因而可以简化MBR工艺的操作。采用低浓度的次氯酸钠作为反冲洗药剂也会显著延长膜的离线清洗周期。次氯酸钠化学反洗能够有效防止丝状菌(如:Thiothrix eikelboomi)在膜表面的沉积。与传统原位化学反洗方法相比,该方法能够显著降低次氯酸钠的投加量。清洗药剂暴露实验表明,氧化性药剂和碱液会破坏膜污染物中蛋白质或多糖的物理化学性质(如:粘稠指数降低或流变性增强、分子尺寸减小和表面电荷增多等)和官能团结构(如:羰基和羧基等基团增多和脂肪酸链减少等),这一定程度上增强了膜污染物的亲水性,并最终改变其膜污染规律(经化学药剂暴露后膜污染物的过滤性能明显增强)。